Show simple item record

dc.contributor.authorHorstmann, Birger
dc.contributor.authorGallant, Betar
dc.contributor.authorMitchell, Robert
dc.contributor.authorBessler, Wolfgang G.
dc.contributor.authorShao-Horn, Yang
dc.contributor.authorBazant, Martin Z.
dc.date.accessioned2014-11-07T14:06:46Z
dc.date.available2014-11-07T14:06:46Z
dc.date.issued2013-11
dc.date.submitted2013-09
dc.identifier.issn1948-7185
dc.identifier.urihttp://hdl.handle.net/1721.1/91487
dc.description.abstractCompact solid discharge products enable energy storage devices with high gravimetric and volumetric energy densities, but solid deposits on active surfaces can disturb charge transport and induce mechanical stress. In this Letter, we develop a nanoscale continuum model for the growth of Li[subscript 2]O[subscript 2] crystals in lithium–oxygen batteries with organic electrolytes, based on a theory of electrochemical nonequilibrium thermodynamics originally applied to Li-ion batteries. As in the case of lithium insertion in phase-separating LiFePO[subscript 4] nanoparticles, the theory predicts a transition from complex to uniform morphologies of Li[subscript 2]O[subscript 2] with increasing current. Discrete particle growth at low discharge rates becomes suppressed at high rates, resulting in a film of electronically insulating Li[subscript 2]O[subscript 2] that limits cell performance. We predict that the transition between these surface growth modes occurs at current densities close to the exchange current density of the cathode reaction, consistent with experimental observations.en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (Award DMR-0819762)en_US
dc.description.sponsorshipGerman Academic Exchange Serviceen_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowshipen_US
dc.language.isoen_US
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/jz401973cen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcearXiven_US
dc.titleRate-Dependent Morphology of Li[subscript 2]O[subscript 2] Growth in Li–O[subscript 2] Batteriesen_US
dc.typeArticleen_US
dc.identifier.citationHorstmann, Birger, Betar Gallant, Robert Mitchell, Wolfgang G. Bessler, Yang Shao-Horn, and Martin Z. Bazant. “ Rate-Dependent Morphology of Li[subscript 2]O[subscript 2] Growth in Li–O[subscript 2] Batteries .” The Journal of Physical Chemistry Letters 4, no. 24 (December 19, 2013): 4217–4222.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Electrochemical Energy Laboratoryen_US
dc.contributor.mitauthorHorstmann, Birgeren_US
dc.contributor.mitauthorGallant, Betaren_US
dc.contributor.mitauthorMitchell, Roberten_US
dc.contributor.mitauthorShao-Horn, Yangen_US
dc.contributor.mitauthorBazant, Martin Z.en_US
dc.relation.journalThe Journal of Physical Chemistry Lettersen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsHorstmann, Birger; Gallant, Betar; Mitchell, Robert; Bessler, Wolfgang G.; Shao-Horn, Yang; Bazant, Martin Z.en_US
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record