Show simple item record

dc.contributor.authorLi, Adrienne Victoria
dc.contributor.authorAbbink, Peter
dc.contributor.authorLiu, Jinyan
dc.contributor.authorLi, Hualin
dc.contributor.authorStanley, Kelly A.
dc.contributor.authorSmith, Kaitlin M.
dc.contributor.authorLavine, Christy L.
dc.contributor.authorSeaman, Michael S.
dc.contributor.authorKramer, Joshua A.
dc.contributor.authorMiller, Andrew D.
dc.contributor.authorAbraham, Wuhbet
dc.contributor.authorSuh, Heikyung
dc.contributor.authorElkhader, Jamal
dc.contributor.authorBarouch, Dan H.
dc.contributor.authorDeMuth, Peter Charles
dc.contributor.authorIrvine, Darrell J.
dc.contributor.authorHammond, Paula T.
dc.date.accessioned2014-11-17T18:58:55Z
dc.date.available2014-11-17T18:58:55Z
dc.date.issued2013-12
dc.identifier.issn1087-0156
dc.identifier.issn1546-1696
dc.identifier.urihttp://hdl.handle.net/1721.1/91599
dc.description.abstractTranscutaneous drug delivery from planar skin patches is effective for small-molecule drugs and skin-permeable vaccine adjuvants. However, to achieve efficient delivery of vaccines and other macromolecular therapeutics into the skin, penetration of the stratum corneum is needed. Topically applied skin patches with micron-scale projections ('microneedles') pierce the upper layers of the skin and enable vaccines that are coated on or encapsulated within the microneedles to be dispersed into the skin. Although millimeter-scale syringes have shown promise for vaccine delivery in humans and technologies, such as the Dermaroller (Dermaroller, Wolfenbüttel, Germany), exist for creating microscale punctures in the skin for delivery of solutions of therapeutics, solid microprojection microneedles coated with dry vaccine formulations offer a number of valuable features for vaccination, including reduced risk of blood-borne pathogen transmission or needle-stick injury, the potential for vaccine administration by minimally trained personnel or even self administration and the use of solid-state vaccine formulations that may reduce or eliminate cold-chain requirements in vaccine distribution. Recent studies in mice have demonstrated the ability of microneedles to effectively deliver vaccines to the skin, eliciting protective immunity to influenza, hepatitis C and West Nile virus.en_US
dc.description.sponsorshipRagon Institute of MGH, MIT and Harvarden_US
dc.description.sponsorshipMassachusetts Institute of Technologyen_US
dc.description.sponsorshipHarvard Universityen_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (AI095109)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (AI096040)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (AI095985)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (AI078526)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (AI060354)en_US
dc.description.sponsorshipUnited States. Dept. of Defense (Contract W911NF-07-D-0004)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/nbt.2759en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleVaccine delivery with microneedle skin patches in nonhuman primatesen_US
dc.typeArticleen_US
dc.identifier.citationDeMuth, Peter C, Adrienne V Li, Peter Abbink, Jinyan Liu, Hualin Li, Kelly A Stanley, Kaitlin M Smith, et al. “Vaccine Delivery with Microneedle Skin Patches in Nonhuman Primates.” Nature Biotechnology 31, no. 12 (December 6, 2013): 1082–1085.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Soldier Nanotechnologiesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorDeMuth, Peter Charlesen_US
dc.contributor.mitauthorLi, Adrienne Victoriaen_US
dc.contributor.mitauthorAbraham, Wuhbeten_US
dc.contributor.mitauthorSuh, Heikyungen_US
dc.contributor.mitauthorElkhader, Jamalen_US
dc.contributor.mitauthorIrvine, Darrell J.en_US
dc.contributor.mitauthorHammond, Paula T.en_US
dc.relation.journalNature Biotechnologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsDeMuth, Peter C; Li, Adrienne V; Abbink, Peter; Liu, Jinyan; Li, Hualin; Stanley, Kelly A; Smith, Kaitlin M; Lavine, Christy L; Seaman, Michael S; Kramer, Joshua A; Miller, Andrew D; Abraham, Wuhbet; Suh, Heikyung; Elkhader, Jamal; Hammond, Paula T; Barouch, Dan H; Irvine, Darrell Jen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0787-298X
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record