| dc.contributor.author | Swallow, Jessica Gabrielle | |
| dc.contributor.author | Lu, Qiyang | |
| dc.contributor.author | Kim, Jae Jin | |
| dc.contributor.author | Chiang, Yet-Ming | |
| dc.contributor.author | Yildiz, Bilge | |
| dc.contributor.author | Tuller, Harry L. | |
| dc.contributor.author | Van Vliet, Krystyn J | |
| dc.contributor.author | Woodford, William H. | |
| dc.contributor.author | Chen, Yan | |
| dc.contributor.author | Chen, Di | |
| dc.contributor.author | Carter, W Craig | |
| dc.contributor.author | Van Vliet, Krystyn J | |
| dc.date.accessioned | 2014-11-19T21:03:17Z | |
| dc.date.available | 2014-11-19T21:03:17Z | |
| dc.date.issued | 2014-01 | |
| dc.date.submitted | 2013-05 | |
| dc.identifier.issn | 1385-3449 | |
| dc.identifier.issn | 1573-8663 | |
| dc.identifier.uri | http://hdl.handle.net/1721.1/91617 | |
| dc.description.abstract | Functional materials for energy conversion and storage exhibit strong coupling between electrochemistry and mechanics. For example, ceramics developed as electrodes for both solid oxide fuel cells and batteries exhibit cyclic volumetric expansion upon reversible ion transport. Such chemomechanical coupling is typically far from thermodynamic equilibrium, and thus is challenging to quantify experimentally and computationally. In situ measurements and atomistic simulations are under rapid development to explore how this coupling can be used to potentially improve both device performance and durability. Here, we review the commonalities of coupling between electrochemical and mechanical states in fuel cell and battery materials, illustrating with specific cases the progress in materials processing, in situ characterization, and computational modeling and simulation. We also highlight outstanding questions and opportunities in these applications – both to better understand the limiting mechanisms within the materials and to significantly advance the durability and predictability of device performance required for renewable energy conversion and storage. | en_US |
| dc.description.sponsorship | United States. Dept. of Energy (Basic Energy Sciences Division of Materials Sciences and Engineering, grant DE-SC0002633) | en_US |
| dc.description.sponsorship | United States. Dept. of Energy (Office of Science, Graduate Fellowship Program (DOE SCGF)) | en_US |
| dc.description.sponsorship | United States. American Recovery and Reinvestment Act of 2009 (ORISE-ORAU, contract no. DE-AC05-06OR23100)) | en_US |
| dc.description.sponsorship | United States. Dept. of Energy. Division of Materials Sciences and Engineering (MIT/DMSE Salapatas Fellowship) | en_US |
| dc.description.sponsorship | United States. Air Force Office of Scientific Research (Presidential Early Career Award in Science and Engineering (PECASE)) | en_US |
| dc.language.iso | en_US | |
| dc.publisher | Springer Science+Business Media | en_US |
| dc.relation.isversionof | http://dx.doi.org/10.1007/s10832-013-9872-2 | en_US |
| dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
| dc.source | MIT web domain | en_US |
| dc.title | Chemomechanics of ionically conductive ceramics for electrical energy conversion and storage | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Swallow, J. G., W. H. Woodford, Y. Chen, Q. Lu, J. J. Kim, D. Chen, Y.-M. Chiang, et al. “Chemomechanics of Ionically Conductive Ceramics for Electrical Energy Conversion and Storage.” Journal of Electroceramics 32, no. 1 (January 16, 2014): 3–27. | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Laboratory for Material Chemomechanics | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Materials Science and Engineering | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Nuclear Science and Engineering | en_US |
| dc.contributor.mitauthor | Swallow, Jessica Gabrielle | en_US |
| dc.contributor.mitauthor | Woodford, William Henry | en_US |
| dc.contributor.mitauthor | Chen, Y. | en_US |
| dc.contributor.mitauthor | Lu, Qiyang | en_US |
| dc.contributor.mitauthor | Kim, Jae Jin | en_US |
| dc.contributor.mitauthor | Chen, D. | en_US |
| dc.contributor.mitauthor | Chiang, Yet-Ming | en_US |
| dc.contributor.mitauthor | Carter, W. Craig | en_US |
| dc.contributor.mitauthor | Yildiz, Bilge | en_US |
| dc.contributor.mitauthor | Tuller, Harry L. | en_US |
| dc.contributor.mitauthor | Van Vliet, Krystyn J. | en_US |
| dc.relation.journal | Journal of Electroceramics | en_US |
| dc.eprint.version | Author's final manuscript | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
| dspace.orderedauthors | Swallow, J. G.; Woodford, W. H.; Chen, Y.; Lu, Q.; Kim, J. J.; Chen, D.; Chiang, Y.-M.; Carter, W. C.; Yildiz, B.; Tuller, H. L.; Van Vliet, K. J. | en_US |
| dc.identifier.orcid | https://orcid.org/0000-0001-8339-3222 | |
| dc.identifier.orcid | https://orcid.org/0000-0001-5799-3195 | |
| dc.identifier.orcid | https://orcid.org/0000-0001-5735-0560 | |
| dc.identifier.orcid | https://orcid.org/0000-0001-7564-7173 | |
| dc.identifier.orcid | https://orcid.org/0000-0002-2688-5666 | |
| dc.identifier.orcid | https://orcid.org/0000-0001-6063-023X | |
| dc.identifier.orcid | https://orcid.org/0000-0002-2187-9240 | |
| dc.identifier.orcid | https://orcid.org/0000-0002-0833-7674 | |
| dc.identifier.orcid | https://orcid.org/0000-0002-9155-3684 | |
| mit.license | OPEN_ACCESS_POLICY | en_US |
| mit.metadata.status | Complete | |