Show simple item record

dc.contributor.authorSwallow, Jessica Gabrielle
dc.contributor.authorLu, Qiyang
dc.contributor.authorKim, Jae Jin
dc.contributor.authorChiang, Yet-Ming
dc.contributor.authorYildiz, Bilge
dc.contributor.authorTuller, Harry L.
dc.contributor.authorVan Vliet, Krystyn J
dc.contributor.authorWoodford, William H.
dc.contributor.authorChen, Yan
dc.contributor.authorChen, Di
dc.contributor.authorCarter, W Craig
dc.contributor.authorVan Vliet, Krystyn J
dc.date.accessioned2014-11-19T21:03:17Z
dc.date.available2014-11-19T21:03:17Z
dc.date.issued2014-01
dc.date.submitted2013-05
dc.identifier.issn1385-3449
dc.identifier.issn1573-8663
dc.identifier.urihttp://hdl.handle.net/1721.1/91617
dc.description.abstractFunctional materials for energy conversion and storage exhibit strong coupling between electrochemistry and mechanics. For example, ceramics developed as electrodes for both solid oxide fuel cells and batteries exhibit cyclic volumetric expansion upon reversible ion transport. Such chemomechanical coupling is typically far from thermodynamic equilibrium, and thus is challenging to quantify experimentally and computationally. In situ measurements and atomistic simulations are under rapid development to explore how this coupling can be used to potentially improve both device performance and durability. Here, we review the commonalities of coupling between electrochemical and mechanical states in fuel cell and battery materials, illustrating with specific cases the progress in materials processing, in situ characterization, and computational modeling and simulation. We also highlight outstanding questions and opportunities in these applications – both to better understand the limiting mechanisms within the materials and to significantly advance the durability and predictability of device performance required for renewable energy conversion and storage.en_US
dc.description.sponsorshipUnited States. Dept. of Energy (Basic Energy Sciences Division of Materials Sciences and Engineering, grant DE-SC0002633)en_US
dc.description.sponsorshipUnited States. Dept. of Energy (Office of Science, Graduate Fellowship Program (DOE SCGF))en_US
dc.description.sponsorshipUnited States. American Recovery and Reinvestment Act of 2009 (ORISE-ORAU, contract no. DE-AC05-06OR23100))en_US
dc.description.sponsorshipUnited States. Dept. of Energy. Division of Materials Sciences and Engineering (MIT/DMSE Salapatas Fellowship)en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (Presidential Early Career Award in Science and Engineering (PECASE))en_US
dc.language.isoen_US
dc.publisherSpringer Science+Business Mediaen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10832-013-9872-2en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleChemomechanics of ionically conductive ceramics for electrical energy conversion and storageen_US
dc.typeArticleen_US
dc.identifier.citationSwallow, J. G., W. H. Woodford, Y. Chen, Q. Lu, J. J. Kim, D. Chen, Y.-M. Chiang, et al. “Chemomechanics of Ionically Conductive Ceramics for Electrical Energy Conversion and Storage.” Journal of Electroceramics 32, no. 1 (January 16, 2014): 3–27.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Material Chemomechanicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.contributor.mitauthorSwallow, Jessica Gabrielleen_US
dc.contributor.mitauthorWoodford, William Henryen_US
dc.contributor.mitauthorChen, Y.en_US
dc.contributor.mitauthorLu, Qiyangen_US
dc.contributor.mitauthorKim, Jae Jinen_US
dc.contributor.mitauthorChen, D.en_US
dc.contributor.mitauthorChiang, Yet-Mingen_US
dc.contributor.mitauthorCarter, W. Craigen_US
dc.contributor.mitauthorYildiz, Bilgeen_US
dc.contributor.mitauthorTuller, Harry L.en_US
dc.contributor.mitauthorVan Vliet, Krystyn J.en_US
dc.relation.journalJournal of Electroceramicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSwallow, J. G.; Woodford, W. H.; Chen, Y.; Lu, Q.; Kim, J. J.; Chen, D.; Chiang, Y.-M.; Carter, W. C.; Yildiz, B.; Tuller, H. L.; Van Vliet, K. J.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8339-3222
dc.identifier.orcidhttps://orcid.org/0000-0001-5799-3195
dc.identifier.orcidhttps://orcid.org/0000-0001-5735-0560
dc.identifier.orcidhttps://orcid.org/0000-0001-7564-7173
dc.identifier.orcidhttps://orcid.org/0000-0002-2688-5666
dc.identifier.orcidhttps://orcid.org/0000-0001-6063-023X
dc.identifier.orcidhttps://orcid.org/0000-0002-2187-9240
dc.identifier.orcidhttps://orcid.org/0000-0002-0833-7674
dc.identifier.orcidhttps://orcid.org/0000-0002-9155-3684
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record