MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Recognizing actions using embodiment & empathy

Author(s)
McIntyre, Robert Louis
Thumbnail
DownloadFull printable version (5.661Mb)
Alternative title
Recognizing actions using embodiment and empathy
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Patrick H. Winston.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Here I demonstrate the power of using embodied artificial intelligence to attack the action recognition problem, which is the challenge of recognizing actions performed by a creature given limited data about the creature's actions, such as a video recording. I solve this problem in the case of a worm-like creature performing actions such as curling and wiggling. To attack the action recognition problem, I developed a computational model of empathy (EMPATH) which allows me to recognize actions using simple, embodied representations of actions (which require rich sensory data), even when that sensory data is not actually available. The missing sense data is imagined by combining previous experiences gained from unsupervised free play. The worm is a five-segment creature equipped with touch, proprioception, and muscle tension senses. It recognizes actions using only proprioception data. In order to build this empathic, action-recognizing system, I created a program called CORTEX, which is a complete platform for embodied AI research. It provides multiple senses for simulated creatures, including vision, touch, proprioception, muscle tension, and hearing. Each of these senses provides a wealth of parameters that are biologically inspired. CORTEX is able to simulate any number of creatures and senses, and provides facilities for easily modeling and creating new creatures. As a research platform it is more complete than any other system currently available.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2014.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 83-85).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/91697
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.