MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Robust dynamic symbol recognition : the ClockSketch classifier

Author(s)
Ma, Kăichén
Thumbnail
DownloadFull printable version (9.053Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Randall Davis.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
I present an automatic classifier for the digitized clock drawing test, a neurological diagnostic exam used to assess patients' mental acuity by having them draw an analog clock face using a digitizing pen. This classifier assists human examiners in clock drawing interpretation by labeling several basic components of a drawing, including its outline, numerals, hands, and noise, thereby freeing examiners to concentrate on more complex labeling problems. This is a challenging problem despite its specificity, because the average user of the clock drawing test has a high likelihood of cognitive or motor impairment. As a result, mistakes such as crossed-out numerals, messiness, missing components, and noise will be common in drawings, and a well-designed classifier must be capable of handling and correcting for various types of error. I describe in this thesis the construction of a system that is both accurate and robust enough to handle variable input, laying out its components and the principles behind its design. I demonstrate that this system accurately recognizes and classifies the basic components of a drawing, even when applied to a wide range of clinical input, and that it is able to do so because it relies both on statistical analysis and on common-sense observations about the structure of the problem at hand.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, June 2014.
 
Cataloged from PDF version of thesis. "May 2013."
 
Includes bibliographical references (page 61).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/91841
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.