MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A spectral approach to noninvasive model-based estimation of intracranial pressure

Author(s)
Noraky, James
Thumbnail
DownloadFull printable version (6.831Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Thomas Heldt.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Intracranial pressure (ICP) is the hydrostatic pressure of the cerebrospinal fluid. Ideally, ICP should be monitored in many neuropathological conditions, as elevated ICP is correlated with poor neurocognitive outcomes after injuries to the brain. Measuring ICP requires the surgical placement of a sensor or catheter into the brain tissue or cerebrospinal fluid spaces of the brain. With the risk of infection and brain damage, ICP is only measured in a small subset of those patients whose treatment could benefit from knowing ICP. We expand on a previously proposed model-based time-domain approach to noninvasive, patient-specific and continuous estimation of ICP using routinely measured waveforms that has been validated on patients with traumatic brain injuries. Here, we present a model-based algorithm to estimate ICP using the functional relationship between the spectral densities of the routinely measured waveforms. We applied this algorithm to both a simulated and clinical dataset. For the simulated dataset, we achieved a mean error (bias) of 1.2 mmHg and a standard deviation of error (SDE) of 2.2 mmHg. For the clinical dataset of patients with traumatic brain injuries, we achieved a bias of 13.7 mmHg and a SDE of 15.0 mmHg. While the clinical results are not favorable, we describe sources of estimation error and future directions of research to improve the ICP estimates.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 60-61).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/91850
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.