MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Latent tree structure learning for cross-document coreference resolution

Author(s)
Shyu, Eric
Thumbnail
DownloadFull printable version (4.669Mb)
Alternative title
Tree structure learning for cross-document coreference
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Leslie P. Kaelbling.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Cross Document Coreference Resolution (CDCR) is the problem of learning which mentions, coming from several different documents, correspond to the same entity. This thesis approaches the CDCR problem by first turning it into a structure learning problem. A latent tree structure, in which leaves correspond to observed mentions and internal nodes correspond to latent sub-entities, is learned. A greedy clustering heuristic can then be used to select subtrees from the learned tree structure as entities. As with other structure learning problems, it is prudent to envoke Occam's razor and perform regularization to obtain the simplest hypothesis. When the state space consists of tree structures, we can impose a bias on the possible structure. Different aspects of tree structure (i.e. number of edges, depth of the leaves, etc.) can be penalized in these models to improve the generalization of thes models. This thesis draws upon these ideas to provide a new model for CDCR. To learn parameters, we implement a parameter estimation algorithm based on existing stochastic gradient-descent based algorithms and show how to further tune regularization parameters. The latent tree structure is then learned using MCMC inference. We show how structural regularization plays a critical role in the inference procedure. Finally, we empirically show that our model out-performs previous work, without using a sophisticated set of features.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 77-79).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/91867
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.