MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Experimental investigation of subcooled flow boiling using synchronized high speed video, infrared thermography, and particle image velocimetry

Author(s)
Phillips, Bren Andrew
Thumbnail
DownloadFull printable version (83.25Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering.
Advisor
Jacopo Buongiorno.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Subcooled flow boiling of water was experimentally investigated using high-speed video (HSV), infrared (IR) thermography, and particle image velocimetry (PIV) to generate a unique database of synchronized data. HSV allowed measurement of the bubble departure diameter. IR thermography allowed measurement of wall superheat (local distribution and surface-averaged values), heat transfer coefficient, nucleation site density, and bubble frequency. Particle image velocimetry allowed for the measurement of velocity profiles in the liquid phase for single bubble nucleation events. The tests were performed at pressures of 1.05, 1.5, and 2.0 bar and at subcoolings of 5, 10, and 15 °C. The mass flux values explored were 150-1250 kg/m2/s. The heat flux values explored were 100-1600 kW/m2. As expected, the heat transfer coefficients increased with increasing mass flux in the single-phase convection and partial boiling regions, and converged to a fully-developed boiling curve for high heat fluxes. The bubble departure diameter decreased with increasing mass flux and decreasing heat flux; in accordance with Sugrue's model. The nucleation site density increased with increasing superheat and decreasing mass flux, as predicted by Kocamustafaogullari and Ishii's model. The nucleation site density models under-predicted the nucleation site density for a given wall superheat. Wait time and frequency models did not reproduce the data accurately, and underestimated wait time by an order of magnitude. A new mechanistic model for calculating the wait time was developed that split the wall heat flux into the component that is transferred to the fluid, and the component that is transferred as sensible heat into the heater wall. Significant localized cooling was observed underneath bubbles sliding along the wall after departure from a nucleation site, an effect which should be considered in advanced models of subcooled flow boiling. The sliding bubble thermal effects were found to be insensitive to system conditions and were limited by the thermal conduction within the substrate. Bubble growth front velocities, and regions of flow influence of departing bubbles were measured with PIV. The database generated in this project can be used to inspire or validate mechanistic models and/or CFD simulations of subcooled flow boiling heat transfer.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2014.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages [133]-138).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/92060
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Nuclear Science and Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.