MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A low-cost, high-strength, open-source, rapid prototypeable underactuated robot gripper

Author(s)
Gonzalez, Daniel Jesus
Thumbnail
DownloadFull printable version (36.79Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
H. Harry Asada.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this work, an underactuated robot gripper was designed to meet specifications for strength, cost, and ease of manufacturing with Open-Source distribution in mind. The specifications emerged from a need for inexpensive grippers that can be used on robots that help people brace and balance. The structure and transmission of the gripper is designed to bear 150 lbs-force of static tensile and compressive loads. Gripping forces that exceed the static actuator force output are achieved by a novel method of clamping the main drive tendon by detecting dynamic overshoot and applying a self-helping cable brake, relieving the main drive actuator. The geometry, stiffness, and behavior of the gripper was designed using mathematical models and tools developed in prior art for the optimal design of underactuated hands. Apart from the actuators and waterjet machining services, the materials for the gripper can be purchased in one McMaster-Carr order. The entire structure can be cut from a single sheet of 1/16" 2024 aluminum and requires one operation on a waterjet machine, which can be found in many machine shops or through online machining services. It is the intention of the author to release the design files as Open-Source in order to allow robot researchers, engineers, and enthusiasts to use this gripper in their own work.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 47-49).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/92066
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.