MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Uncertainty quantification in safety codes using a Bayesian approach with data from separate and integral effect tests

Author(s)
Yurko, Joseph Paul
Thumbnail
DownloadFull printable version (29.63Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering.
Advisor
Jacopo Buongiorno.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Uncertainty quantification in thermal-hydraulic safety codes is a very challenging and computationally expensive endeavor. Methods are therefore needed to reduce that computational burden, while still providing a reasonable estimate for uncertainty. To do so, a Quantitative Phenomena Identification and Ranking Table (QPIRT) is implemented to screen down to key parameters that influence a figure of merit. From there, a surrogate model is built to approximate the complex input-output relationship of the safety code. The surrogate model type chosen is that of a probabilistic response surface following the Gaussian Process (GP) model framework. A GP prior is placed on the input/output functional relationship, which ultimately leads to a Bayesian non-parametric non-linear model of the safety code. The surrogate emulates the behavior of the long running computer code and thanks to the GP, provides a simple estimate to the additional uncertainty in making a prediction. In addition, for emulating multiple outputs together, which is difficult to do with standard GP models, Gaussian Process Factor Analysis (GPFA) models also known as Function Factorization with Gaussian Process Priors (FFGP) models were applied. The FFGP models are far more complicated than the standard GP model and so various simplifying approximations were made to enable fast yet accurate emulation of the safety code. All together a suite of surrogate models with varying levels of complexity and thus flexibility were developed for emulating the complex response from a safety code. These very computationally cheap surrogates are then used to propagate the uncertainty in the key parameters onto the FOM. Information from previous Separate and Integral Effect Tests is then used to calibrate those key parameter distributions with Markov Chain Monte Carlo (MCMC). This allows the ultimate uncertainty of the figure of merit to be found conditioned on the knowledge gained from those past experiments.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 359-366).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/92095
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Nuclear Science and Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.