Show simple item record

dc.contributor.advisorJohn G. Brisson.en_US
dc.contributor.authorKnodel, Philip Clintonen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2014-12-08T18:51:20Z
dc.date.available2014-12-08T18:51:20Z
dc.date.copyright2014en_US
dc.date.issued2014en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/92135
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 149-151).en_US
dc.description.abstractAdvances in battlefield equipment have created a demand for portable power systems with greater power density and more flexibility than current battery sources alone can provide. One potential solution lies in portable, high-frequency thermoacoustic engines, which can provide a battery recharge station or direct power supply for soldiers in-field, with the flexibility of operating on any quality heat source such as a butane heater. In this work, a linearly-acting variable-reluctance generator (VRG) is developed to act as a high-frequency (250 Hz) electro-acoustic transducer and extract electric power from a proposed thermoacoustic engine design. A computational model of the thermoacoustic engine was developed using DeltaEC to determine the feasibility of the concept and the necessary characteristics of the transducer element. The unique requirements of the high-frequency thermoacoustic engine led to the design, optimization, fabrication, and testing of the VRG, which is designed to operate resonantly in the thermoacoustic system and supported by a self-pumping gas bearing system. The VRG is uniquely suited to efficiently convert small amplitude mechanical oscillations (5 mm in this work) into electric power. Linear and nonlinear saturation models of the transducer were developed to optimize the VRG design and predict transducer performance in the thermoacoustic engine. The accuracy of these models was established by comparing simulation results to static experimental data and dynamic experimental data taken at 50-60 Hz oscillation frequency, testing one half of the full transducer. Experimental testing resulted in a maximum power output of 5.74 Watts with an efficiency of 55.8%. The results led to the conclusion that the transducer would function as designed in the thermoacoustic engine. Recommendations for future work and guidelines for future development of the engine, transducer, and bearing system are provided based on the design and results presented in this work.en_US
dc.description.statementofresponsibilityby Philip Clinton Knodel.en_US
dc.format.extent151 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleLinearly-acting variable-reluctance generator for thermoacoustic applicationsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc896160221en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record