Show simple item record

dc.contributor.advisorPaul D. Sclavounos.en_US
dc.contributor.authorCasanovas, Carlos (Casanovas Bermejo)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2014-12-08T18:52:22Z
dc.date.available2014-12-08T18:52:22Z
dc.date.copyright2014en_US
dc.date.issued2014en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/92149
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 64-65).en_US
dc.description.abstractFloating Offshore Wind Turbines (FOWT) is a technology that stands to spearhead the rapid growth of the offshore wind energy sector and allow the exploration of vast high quality wind resources over coastal and offshore areas with intermediate and large water depths. This generates the need for a new generation of Wind Turbine control systems that take into account the added complexity of the dynamics and wave-induced motions of the specific floater. The present work presents a simulation study of advanced controls for Tension Leg Platform (TLP) FOWT that attempts to enhance the power output of the Wind Turbine by conversion of the surge kinetic energy of the TLP into wind energy. The public access data of the NREL 5MW offshore wind turbine have been used to perform the study. After establishing a theoretical upper bound for the possible wave energy extraction using frequency-domain methods, a time-domain state-space dynamic model of the FOWT with coupled dynamics of platform surge motion and turbine rotation has been developed that includes both a simplified model of the turbine aerodynamics and the floater surge hydrodynamics. This simulation model has then been used to implement advanced controls that maximize energy extraction by the Wind Turbine in the below rated power region. The proposed controllers are variations of a Linear-Quadratic Regulator (LQR), considering both a steady-state case and a non-stationary, finite horizon LQR case. The latter requires wave-elevation forecasting to be implemented and therefore two different forecasting algorithms have also been developed according to existing literature. While the wave-induced annual energy yield enhancement of the studied FOWT in the two considered locations is small (around 0.02% the baseline annual energy yield of the studied turbine in the two locations) the study is not exhaustive and other FOWT topologies might achieve better results. The present results clearly indicate, however, that the existing correlation between strong wind and waves makes FOWTs a sub-optimal choice as energy extraction mechanism for ocean wave energy harvesting.en_US
dc.description.statementofresponsibilityby Carlos Casanovas.en_US
dc.format.extent70 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleAdvanced controls for floating wind turbinesen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc896822869en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record