Show simple item record

dc.contributor.advisorHarry Asada.en_US
dc.contributor.authorNeal, Devin Michaelen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2014-12-08T18:53:48Z
dc.date.available2014-12-08T18:53:48Z
dc.date.copyright2014en_US
dc.date.issued2014en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/92166
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 80-89).en_US
dc.description.abstractThe majority of muscles, nerves, and tendons are composed of fiber-like fascicle morphology. Each fascicle has a) elongated cells highly aligned with the length of the construct, b) a high volumetric cell density, and c) a high length-to-width ratio with a diameter small enough to facilitate perfusion. Fiber-like fascicles are important building blocks for forming those tissues of various sizes and cross-sectional shapes, yet no effective technology is currently available for producing long and thin fascicle-like constructs with aligned, high-density cells. Here we present a method for molding cell-laden hydrogels that generate cylindrical tissue structures that are ~100 [mu]m in diameter with an extremely high length to diameter ratio (>100:1). Using this method we have successfully created skeletal muscle tissue with a high volumetric density (~50%) and perfect cell alignment along the axis. A new molding technique, Sacrificial Outer Molding, allows us to i) create long and thin cavities of desired shape in a mold that is solid at a low temperature, ii) release gelling agents from the sacrificial mold material after cellladen hydrogel is injected into fiber cavities, iii) generate a uniform axial tension between anchor points at both ends that promotes cell alignment and maturation, and iv) perfuse the tissue effectively by exposing it to media after melting the sacrificial outer mold at 37°C. Effects of key parameters and conditions, including initial cavity diameter, axial tension, and concentrations of hydrogel and gelling agent, upon tissue compaction, volumetric cell density, and cell alignment are presented. Furthermore, the tissue is characterized in a custom designed mechanical characterization system. Characterization has shown that an optimal diameter exists at which muscle constructs exhibit the greatest contraction performance, and that optical and electrical stimulation of optogenetic muscle cells result in similar performance if the tissue is developed sufficiently.en_US
dc.description.statementofresponsibilityby Devin Michael Neal.en_US
dc.format.extent142 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleElongated fascicle-inspired 3D tissues consisting of high-density, aligned, optogenetically excitable muscle tissue using sacrificial outer moldingen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc897133010en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record