Show simple item record

dc.contributor.advisorIan W. Hunter.en_US
dc.contributor.authorPaster, Eli (Eli Travis)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2014-12-08T18:53:52Z
dc.date.available2014-12-08T18:53:52Z
dc.date.copyright2014en_US
dc.date.issued2014en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/92167
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 150-154).en_US
dc.description.abstractGas chromatography is one of the most widely used analytical chemistry techniques for separating and analyzing chemical compounds. Chromatographic methods are used to identify constituent species within a compound and determine the purity and relative concentrations of those species. Current gas chromatographs are heavy, bench top instruments that require large capital expenditures, kilowatt power sources, and trained technicians. Additionally, traditional chromatographic measurements are non-continuous. The first part of this thesis explores the application of stochastic system identification techniques applied to chromatography to enable continuous chromatographic measurements, multiplexing of instrument components, and the ability to optimally tune instrumentation parameters and reduce chromatogram noise. The second part of this thesis explores the development of a miniaturized, standalone gas chromatograph. A handheld, low-cost gas chromatograph has been developed over the course of five device generations, through the implementation of localized heating techniques, on-demand gas generation, and the integration of electrical, mechanical, and chemical processes into a compact volume. Characterization of the device shows comparable operating parameters and performance to equivalent bench top instruments at 0.5% total cost and 0.03% total volume. These contributions reduce the barrier-to-entry for performing high quality chemical measurements, and enable more widespread use of chromatography in monitored, closed-loop, remote operation and automated systems.en_US
dc.description.statementofresponsibilityby Eli Paster.en_US
dc.format.extent154 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleDevelopment of a miniature, continuous measurement, stochastic perturbation gas chromatographen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc897133668en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record