MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Models for project management

Author(s)
Messmacher, Eduardo B. (Eduardo Bernhart), 1972-
Thumbnail
DownloadFull printable version (9.124Mb)
Other Contributors
Massachusetts Institute of Technology. Operations Research Center.
Advisor
Donald Rosenfield.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Organizations perform work essentially through operations and projects. The characteristics of projects makes them extremely difficult to manage: their non repetitive nature discards the trial and error learning, while their short life span is particularly unforgiving to misjudgments. Some authors have found that effective scheduling is an important contributor to the success of research and development (R&D), as well as construction projects. The widely used critical path method for scheduling projects and identifying important activities fails to capture two important dimensions of the problem: the availability of different technologies (or options) to perform the activities, and the inherent problem of limited availability of resources that most managers face. Nevertheless, when one tries to account for such additional constraints, the problems become very hard to solve. In this thesis we propose an approach to the scheduling problem using a genetic algorithm, and try to compare its performance to more traditional approaches, such as an extension to a very innovative Lagrangian relaxation approach recently proposed. The purpose of using genetic algorithms is twofold: first to obtain good approximations to very hard problems, and second to realize the limitations and virtues of this search technique. The purpose of this thesis is not only to develop the algorithms, but also to obtain insight about the implications of the additional constraints in the perspective of a project manager.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2000.
 
Also available online at the DSpace at MIT website.
 
Includes bibliographical references (p. 119-122).
 
Date issued
2000
URI
http://hdl.handle.net/1721.1/9217
Department
Massachusetts Institute of Technology. Operations Research Center; Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Operations Research Center.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.