MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Activation of conductive pathways via deformation-induced instabilities

Author(s)
Ni, Xinchen
Thumbnail
DownloadFull printable version (13.37Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Mary C. Boyce
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Inspired by the pattern transformation of periodic elastomeric cellular structures, the purpose of this work is to exploit this unique ability to activate conductive via deformation-induced instabilities. Two microstructural features, the contact nub and the conductive pathway, are introduced to make connections within the void and between the voids upon pattern transformation. Finite element-based micromechanical models are employed to investigate the effects of the contact nub geometries, conductive pathway patterns and elastic properties of the coating and substrate materials on the buckling responses of the structure. Finally, a flexible circuit that can be switched on and off by an applied uniaxial load is fabricated based on the finite element analysis and demonstrated the ability to activate conductive pathways in response to an external triggering stimulus.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014.
 
"June 2014." Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/92170
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.