dc.contributor.advisor | Evelyn N. Wang. | en_US |
dc.contributor.author | Tio, Evelyn | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Mechanical Engineering. | en_US |
dc.date.accessioned | 2014-12-08T18:56:49Z | |
dc.date.available | 2014-12-08T18:56:49Z | |
dc.date.copyright | 2014 | en_US |
dc.date.issued | 2014 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/92210 | |
dc.description | Thesis: S.B., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (page 27). | en_US |
dc.description.abstract | Recent studies have shown that jumping-droplet-enhanced condensation has higher heat transfer than state-of-the-art dropwise condensing surfaces by -30-40%. Jumping-droplet condensation occurs due to the conversion of surface energy to kinetic energy during the coalescence of microscale droplets, resulting in droplet ejection from the condenser surface. This conversion of energy is fundamentally studied by using electrowetting to decrease the equilibrium contact angle, increasing droplet surface area. Releasing the voltage allows the droplet to release excess surface energy, causing the droplet to jump off the surface. In contrast with previous work, droplets were initially held at a static deformed state. Here, jumping from the surface from this static electrowetting-induced state is demonstrated for the first time. Releasing the voltage caused droplets to jump as high as -2 mm with a maximum conversion efficiency between surface and potential energy of -5%. | en_US |
dc.description.statementofresponsibility | by Evelyn Tio. | en_US |
dc.format.extent | 32 pages | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Mechanical Engineering. | en_US |
dc.title | Electrowetting study of jumping droplets on hydrophobic surfaces | en_US |
dc.type | Thesis | en_US |
dc.description.degree | S.B. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | |
dc.identifier.oclc | 897378711 | en_US |