dc.contributor.advisor | Alexie Kolpak. | en_US |
dc.contributor.author | Lentz, Levi (Levi Carl) | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Mechanical Engineering. | en_US |
dc.date.accessioned | 2014-12-08T18:57:20Z | |
dc.date.available | 2014-12-08T18:57:20Z | |
dc.date.copyright | 2014 | en_US |
dc.date.issued | 2014 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/92219 | |
dc.description | Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (pages 113-117). | en_US |
dc.description.abstract | In this thesis, we will present a novel design for a nano-structured organic-inorganic hybrid photovoltaic material that will address current challenges in bulk heterojunction (BHJ) organic-based solar cell materials. Utilizing first principles Density Functional Theory (DFT), we show that layered inorganic phosphates and tradition organic dyes can be combined to form a new class of bulk heterojunction photovoltaic with high electron and hole mobilities with low exciton recombination, potentially enabling very high efficiency with existing organic-based solar-cell molecules. We will discuss the physical origin of these properties and investigate several approaches for engineering the electronic structure of these materials. By using these methods, it will be possible to engineer the transport and optical properties of these materials, with potential applications beyond photovoltaics in areas from organic electronics to photoactuators. | en_US |
dc.description.statementofresponsibility | by Levi Lentz. | en_US |
dc.format.extent | 117 pages | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Mechanical Engineering. | en_US |
dc.title | Rational design of hybrid organic solar cells | en_US |
dc.type | Thesis | en_US |
dc.description.degree | S.M. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | |
dc.identifier.oclc | 897469454 | en_US |