MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Semi-autonomous control of multiple heterogeneous vehicles for intersection collision avoidance

Author(s)
Ahn, Heejin
Thumbnail
DownloadFull printable version (5.427Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Domitilla Del Vecchio.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This paper describes the design of a supervisory controller (supervisor) that manages multiple heterogeneous vehicles, i.e., multiple controlled and uncontrolled vehicles, to avoid intersection collisions. Two main problems are addressed: verification of the safety of all vehicles at an intersection, and management of the inputs of controlled vehicles. For the verification problem, we employ an inserted idle-time scheduling approach, where the "inserted idle-time" is a time interval when the intersection is deliberately held idle for uncontrolled vehicles to safely cross the intersection. For the management problem, we design a supervisor that is least restrictive in the sense that it overrides controlled vehicles only when a safety violation becomes imminent. We analyze computational complexity and propose an efficient version of the supervisor with a quantified approximation bound. To mitigate the abrupt changes of control inputs and to reduce the number of unnecessary interventions, we additionally design two optimization problems and provide the supervisor with a more conservative bound.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 79-80).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/92228
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.