MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spray-Layer-by-Layer Carbon Nanotube/Electrospun Fiber Electrodes for Flexible Chemiresistive Sensor Applications

Author(s)
Saetia, Kittipong; Schnorr, Jan M.; Mannarino, Matthew M.; Kim, Sung Yeol; Rutledge, Gregory C.; Swager, Timothy Manning; Hammond, Paula T.; ... Show more Show less
Thumbnail
DownloadFinal adfm201302344.pdf (8.324Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Development of a versatile method for incorporating conductive materials into textiles could enable advances in wearable electronics and smart textiles. One area of critical importance is the detection of chemicals in the environment for security and industrial process monitoring. Here, the fabrication of a flexible, sensor material based on functionalized multi-walled carbon nanotube (MWNT) films on a porous electrospun fiber mat for real-time detection of a nerve agent simulant is reported. The material is constructed by layer-by-layer (LbL) assembly of MWNTs with opposite charges, creating multilayer films of MWNTs without binder. The vacuum-assisted spray-LbL process enables conformal coatings of nanostructured MWNT films on individual electrospun fibers throughout the bulk of the mat with controlled loading and electrical conductivity. A thiourea-based receptor is covalently attached to the primary amine groups on the MWNT films to enhance the sensing response to dimethyl methylphosphonate (DMMP), a simulant for sarin nerve agent. Chemiresistive sensors based on the engineered textiles display reversible responses and detection limits for DMMP as low as 10 ppb in the aqueous phase and 5 ppm in the vapor phase. This fabrication technique provides a versatile and easily scalable strategy for incorporating conformal MWNT films into three-dimensional substrates for numerous applications.
Date issued
2014-01
URI
http://hdl.handle.net/1721.1/92398
Department
Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies; Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of Chemistry
Journal
Advanced Functional Materials
Publisher
Wiley-VCH Verlag GmbH & Co.
Citation
Saetia, Kittipong, Jan M. Schnorr, Matthew M. Mannarino, Sung Yeol Kim, Gregory C. Rutledge, Timothy M. Swager, and Paula T. Hammond. “Spray-Layer-by-Layer Carbon Nanotube/Electrospun Fiber Electrodes for Flexible Chemiresistive Sensor Applications.” Adv. Funct. Mater. 24, no. 4 (September 20, 2013): 492–502.
Version: Author's final manuscript
ISSN
1616301X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.