MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design and analysis of the front suspension geometry and steering system for a solar electric vehicle

Author(s)
Arensen, Bruce (Bruce Edward)
Thumbnail
DownloadFull printable version (5.743Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Stephen Banzaert.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A study on the design of the front suspension geometry and steering system to be used in a solar electric vehicle. The suspension geometry utilizes a double wishbone design that is optimized to fit in the space constraints of the vehicle. The steering system consists of a rack and pinion connected through tie rods to the steering knuckles, largely optimized based on the space within the vehicle. The final suspension geometry consists of upper and lower wishbone lengths of 4.25 inches and 3.75 inches, respectively. This system is optimized to maintain a proper camber angle and minimize scrub due to track distance changes throughout the travel of the suspension. The geometry of the steering system is designed to fit in the vehicle while achieving a near- Ackermann steering condition. The steering knuckle and steering rack extenders, both made out of Aluminum 6061-T6, are designed based off of this geometry and are optimized for weight and machinability.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (page 43).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/92663
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.