MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Error-suppression by energy-gap protection for quantum computation in open systems

Author(s)
Zhou, Xiang-Yu (Xiang-Yu Leo)
Thumbnail
DownloadFull printable version (4.567Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Physics.
Advisor
Edward Farhi.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Adiabatic Quantum Computation, while attractive due to its "hands-off" approach and intrinsic tolerance of noise, has not been shown to be fully fault-tolerant in a satisfying manner. The protection of the evolution from noise and decoherence through the use of an energy penalty, recently proposed as a method to suppress error in adiabatic algorithms, is also appealing due to its passiveness. In this thesis, we first introduce the background on quantum computation, and discuss existing efforts towards fault-tolerant computation, specifically in the adiabatic model. Subsequently, we will prove a general result concerning the utility of energy-gap protection in generic (not necessarily adiabatic) quantum evolution in open system, and provides analytic bounds on the necessary energy penalty magnitude to achieve good protection. Evidence from numerical simulation is also given to demonstrate the practical usefulness of energy-gap protection for fault-tolerant quantum computation in open systems.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Physics, 2014.
 
Missing pages 43 and 44. Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 57-58).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/92671
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.