Show simple item record

dc.contributor.advisorSangbae Kim.en_US
dc.contributor.authorZhang, Guangtao, S.B. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2015-01-05T20:05:52Z
dc.date.available2015-01-05T20:05:52Z
dc.date.copyright2014en_US
dc.date.issued2014en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/92686
dc.descriptionThesis: S.B., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 79-80).en_US
dc.description.abstractAccurate ground reaction force measurements are important for the development, implementation, and control of high speed legged locomotion robots. From previous research studies, a composite force sensing footpad has been developed, tested, and characterized statically at the MIT Biomimetics Lab. The developed footpad sensor must also be characterized dynamically prior to its implementation with the MIT Cheetah robot. This study includes the design, development, and dynamic characterization of the footpad sensor. In order to characterize the developed footpad sensor dynamically, a custom impact tester has been designed, fabricated, characterized, and verified. The developed impact tester was shown to satisfy all the specified functional requirements and is capable of producing a range of impact conditions to cover the possible operational modes of the MIT Cheetah robot such as running, walking, galloping, or hopping. The previously developed static ANN model was shown to be highly imprecise and a dynamic ANN model was developed to better predicate the force profile during impact. The dynamic ANN model was shown to perform 400% better at predicting peak impact force.It was also verified with additional dynamic testings of the footpad sensor, and RMSE = 3.17% for a maximum reference force reading of 3000N was achieved for the developed dynamic ANN model. The footpad sensor was redesigned and fabricated to integrate with the MIT Cheetah robot. Numerous Cheetah robot hopping experiments were carried out, and the footpad sensor was able to detect ground contact accurately and precisely. 'No damage nor performance degrading of the developed footpad sensor was observed at the end of the experimentation. Though further testing and optimization of the composite footpad sensor is required, the developed prototype has shown promising results under both static and dynamic conditions, which suggests that a composite footpad force sensor is not only a viable approach for force sensing but also likely to take place of the rigid force sensing devices in the high speed locomotion robots' arena.en_US
dc.description.statementofresponsibilityby Guangtao Zhang.en_US
dc.format.extent91 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleDesign, development, and dynamic characterization of multi-axis force sensing composite footpaden_US
dc.typeThesisen_US
dc.description.degreeS.B.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc898212018en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record