Show simple item record

dc.contributor.authorGuth, Lawrence
dc.date.accessioned2015-01-15T19:16:48Z
dc.date.available2015-01-15T19:16:48Z
dc.date.issued2013-08
dc.date.submitted2013-04
dc.identifier.issn1016-443X
dc.identifier.issn1420-8970
dc.identifier.urihttp://hdl.handle.net/1721.1/92898
dc.description.abstractWe construct homotopically non-trivial maps from S[superscript m] to S[superscript m−1] with arbitrarily small k-dilation for each k > [(m + 1) over 2]. We prove that homotopically non-trivial maps from S[superscript m] to S[superscript m−1] cannot have arbitrarily small k-dilation for k ≤ [(m + 1) over 2].en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00039-013-0246-3en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleContraction of Areas vs. Topology of Mappingsen_US
dc.typeArticleen_US
dc.identifier.citationGuth, Larry. “Contraction of Areas Vs. Topology of Mappings.” Geometric and Functional Analysis 23, no. 6 (December 2013): 1804–1902.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorGuth, Lawrenceen_US
dc.relation.journalGeometric and Functional Analysisen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsGuth, Larryen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1302-8657
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record