MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The effects of capillarity on photonic crystal selective emitters

Author(s)
Peykov, Daniel
Thumbnail
DownloadFull printable version (11.36Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Materials Science and Engineering.
Advisor
Christopher A. Schuh.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Photonic crystals offer an unparalleled control over optical properties and are ideal candidates as high efficiency selective emitters. They are, however, known to degrade at elevated temperatures through a number of processes, with one of the most notable being surface evolution by capillary forces. By comprehensively simulating the morphological and optical effects of this phenomenon, in the form of surface diffusion, vapor transport, and grain boundary grooving, this thesis seeks to understand its consequences and attempts to pinpoint methodologies that may prevent it. It was shown that while grain boundary grooves have a negligible effect on photonic crystal structures, vapor transport and surface diffusion may be significant. Indeed, vapor transport was found to progressively reduce the dimensions of photonic crystal cavities, and thus slightly alter their optical properties. Conversely, surface diffusion gradually closed o these cavities, thereby eliminating coupling into their resonant modes, and eradicating their selective emission capabilities. Changes to the shape of these photonic crystal structures that decreased their curvature and removed discontinuities were found to be beneficial in inhibiting degradation by capillarity, and an optimized structure that displays both higher efficiency and greater stability over time was ultimately theorized.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2014.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 60-64).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/92960
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.