MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

New immobilized antimicrobial polyethylenimines : synthesis and properties

Author(s)
Liu, Harris K. (Harris Ken-Ming)
Thumbnail
DownloadFull printable version (7.492Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Chemistry.
Advisor
Alexander M. Klibanov.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Surfaces modified with immobilized N-alkyl-polyethylenimines (N-alkyl-PEls) containing various alkyl groups were synthesized and tested against various pathogenic human influenza viruses to establish structure-to-virucidal activity relationships. Various physical-chemical properties of each surface were correlated with their virucidal activities to identify key antiviral surface properties. The accessibility of N-alkyl-PEI quaternary ammonium groups to influenza virus was subsequently identified as the key determinant of antiviral efficacy, as demonstrated by FITC-lysozyme surface titration. Previously used multistep syntheses to create antimicrobial surfaces by immobilizing Nalkyl- PEls were replaced with a novel aerosol-assisted plasma deposition procedure. N,N-hexyl,methyl-polyethylenimines were directly plasma-coated onto a glass surface. The resulting material was thoroughly characterized and demonstrated to be robust, scalable, bactericidal against Escherichia cofi, and virucidal against human influenza virus. Biocompatibility and bactericidal properties of N-alkyl-PEls immobilized on Boston Keratoprosthetic implants were evaluated in vivo. Surface-attached N,N-hexyl,methylpolyethylenimines exhibited inhibitory effects on Staphylococcus aureus biofilm formation, with no toxicity or adverse reactivity detected.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Chemistry, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/93039
Department
Massachusetts Institute of Technology. Department of Chemistry
Publisher
Massachusetts Institute of Technology
Keywords
Chemistry.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.