MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Free approximation of transport properties in organic system using Stochastic Random Matrix Theory

Author(s)
Xie, Wanqin, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (5.647Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Chemistry.
Advisor
Troy Van Voorhis.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The proposed research is a study and application of Stochastic analysis- Random Matrix Theory(RMT) to fast calculate the transport properties of large static systems with relatively large disorder in mesoscopic size. As a major topic of Random Matrix Theory(RMT), free convolution managed to approximate the distribution of eigenvalues in an Anderson Model.So the next step is trying to expand RMT to approximate other quantities, such as transmission probability, conductivity and etc. Due to the eigenvectors' shifts, RMT works well only for small disorder. System with larger disorder requires to take in account of the changes in eigenvectors directly or through other approximations of the eigenvectors.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Chemistry, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 44-48).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/93040
Department
Massachusetts Institute of Technology. Department of Chemistry
Publisher
Massachusetts Institute of Technology
Keywords
Chemistry.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.