MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning connections in financial time series

Author(s)
Gartheeban, Ganeshapillai
Thumbnail
DownloadFull printable version (14.55Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
John V. Guttag.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Much of modern financial theory is based upon the assumption that a portfolio containing a diversified set of equities can be used to control risk while achieving a good rate of return. The basic idea is to choose equities that have high expected returns, but are unlikely to move together. Identifying a portfolio of equities that remain well diversified over a future investment period is difficult. In our work, we investigate how to use machine learning techniques and data mining to learn cross-sectional patterns that can be used to design diversified portfolios. Specifically, we model the connections among equities from different perspectives, and propose three different methods that capture the connections in different time scales. Using the "correlation" structure learned using our models, we show how to build selective but well-diversified portfolios. We show that these portfolios perform well on out of sample data in terms of minimizing risk and achieving high returns. We provide a method to address the shortcomings of correlation in capturing events such as large losses (tail risk). Portfolios constructed using our method significantly reduce tail risk without sacrificing overall returns. We show that our method reduces the worst day performance from -15% to -9% and increases the Sharpe ratio from 0.63 to 0.71. We also provide a method to model the relationship between the equity return that is unexplained by the market return (excess return) and the amount of sentiment in news releases that hasn't been already reflected in the price of equities (excess sentiment). We show that a portfolio built using this method generates an annualized return of 34% over a 10-year time period. In comparison, the S&P 500 index generated 5% return in the same time period.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 125-132).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/93061
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.