MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Discovering linguistic structures in speech : models and applications

Author(s)
Lee, Chia-ying (Chia-ying Jackie)
Thumbnail
DownloadFull printable version (18.25Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
James R. Glass.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The ability to infer linguistic structures from noisy speech streams seems to be an innate human capability. However, reproducing the same ability in machines has remained a challenging task. In this thesis, we address this task, and develop a class of probabilistic models that discover the latent linguistic structures of a language directly from acoustic signals. In particular, we explore a nonparametric Bayesian framework for automatically acquiring a phone-like inventory of a language. In addition, we integrate our phone discovery model with adaptor grammars, a nonparametric Bayesian extension of probabilistic context-free grammars, to induce hierarchical linguistic structures, including sub-word and word-like units, directly from speech signals. When tested on a variety of speech corpora containing different acoustic conditions, domains, and languages, these models consistently demonstrate an ability to learn highly meaningful linguistic structures. In addition to learning sub-word and word-like units, we apply these models to the problem of one-shot learning tasks for spoken words, and our results confirm the importance of inducing intrinsic speech structures for learning spoken words from just one or a few examples. We also show that by leveraging the linguistic units our models discover, we can automatically infer the hidden coding scheme between the written and spoken forms of a language from a transcribed speech corpus. Learning such a coding scheme enables us to develop a completely data-driven approach to creating a pronunciation dictionary for the basis of phone-based speech recognition. This approach contrasts sharply with the typical method of creating such a dictionary by human experts, which can be a time-consuming and expensive endeavor. Our experiments show that automatically derived lexicons allow us to build speech recognizers that consistently perform closely to supervised speech recognizers, which should enable more rapid development of speech recognition capability for low-resource languages.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 169-188).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/93065
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.