Hardware-level fine-grained thread migration
Author(s)
Lis, Mieszko N. (Mieszko Norbert), 1977-
DownloadFull printable version (10.32Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Srinivas Devadas.
Terms of use
Metadata
Show full item recordAbstract
Although thread migration has long been employed to satisfy load-balancing goals in operating systems for symmetric multiprocessing hardware, the high cost of OS-mediated migration has made more fine-grained applications impractical. With only a few cores per processor, and high overheads due to moving threads across processors and loss of cache affinity, assigning threads to specific processor cores for long periods has remained the default strategy for ensuring maximum performance. Massive-scale single-chip multiprocessors dramatically alter this picture. On-chip data transfer latencies-even across a 100+-core chip-rarely exceed tens of cycles, making the potential cost of thread migration as low as executing several instructions. At the same time, all cores are placed on the same die and typically share one last-level cache distributed on chip, obviating cache affinity concerns. In this dissertation, we explore the limits of fine-grained thread migration by developing an autonomous mechanism for migrating threads implemented entirely in hardware. We then employ migration to implement the unified shared memory abstraction without a cache coherence protocol-a particularly demanding application that requires fast and fine-grained thread movement-and show that performance is competitive with traditional shared memory mechanisms. Finally, we describe a real-world implementation of both concepts in a 110-core single-chip multiprocessor in 45nm ASIC technology.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2014. Cataloged from PDF version of thesis. Includes bibliographical references (pages 109-113).
Date issued
2014Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer SciencePublisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.