MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Semiconductor nanocrystal colloids : manganese doped cadmium selenide, (core)shell composites for biological labeling, and highly fluorescent cadmium telluride

Author(s)
Mikulec, Frederic Victor, 1971-
Thumbnail
DownloadFull printable version (8.989Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Chemistry.
Advisor
Moungi G. Bawendi.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis describes the characterization and applications of nanometer sized semiconductor (or quantum dot) colloids produced by chemical means. The nanocrystals are synthesized by pyrolysis of organometallic precursors in the coordinating solvent trioctylphosphine oxide (TOPO). The important developments that have contributed to this method are discussed. Manganese doped CdSe nanocrystals are synthesized using a manganese and selenium containing organometallic compound. Chemical etching and electron paramagnetic resonance (EPR) experiments reveal that most of the dopant atoms lie near the surface within the inorganic lattice. Results from fluorescence line narrowing (FLN) and photoluminescence excitation (PLE) spectroscopies show that doped nanocrystals behave as if they were undoped nanocrystals in an external magnetic field. The nanocrystal surface is initially passivated by dative organic ligands. Better passivation and optical properties are achieved by growth of a large band gap semiconductor shell that provides both a physical and an energetic barrier between the exciton and the surface. (CdSe)ZnS (core)shell are prepared with control over both core and shell sizes. The composite nanocrystals are characterized by absorption, emission, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), small angle X-ray scattering (SAXS), and wide angle X-ray scattering (W AXS). The maximum quantum yield is achieved when the core is protected from oxidation by a complete shell; thicker shells show no further increase in quantum yield values, due to defects caused by the large lattice mismatch. Exchange of surface TOPO ligands for mercaptocarboxylic acids produces (core)shell nanocrystals that, when treated with base, are soluble in water and remain fluorescent. Established protocols are used to link these water-soluble nanocrystals to the biomolecules avidin or biotin, producing useful fluorescent labels. Stable phosphine tellurides are prepared using hexapropylphosphorus triamide (HPPT). This precursor is used to prepare CdTe nanocrystals that display room temperature quantum yields up to 70%. The CdTe growth is investigated by absorption and emission spectroscopy. CdTe nanocrystals are characterized by TEM and WAXS.
Description
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 1999.
 
Includes bibliographical references.
 
Date issued
1999
URI
http://hdl.handle.net/1721.1/9358
Department
Massachusetts Institute of Technology. Department of Chemistry
Publisher
Massachusetts Institute of Technology
Keywords
Chemistry.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.