MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Visual recognition of multi-agent action

Author(s)
Intille, Stephen S. (Stephen Sean)
Thumbnail
DownloadFull printable version (22.03Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Architecture. Program in Media Arts and Sciences.
Advisor
Aaron F. Bobick.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Developing computer vision sensing systems that work robustly in everyday environments will require that the systems can recognize structured interaction between people and objects in the world. This document presents a new theory for the representation and recognition of coordinated multi-agent action from noisy perceptual data. The thesis of this work is as follows: highly structured, multi-agent action can be recognized from noisy perceptual data using visually grounded goal-based primitives and low-order temporal relationships that are integrated in a probabilistic framework. The theory is developed and evaluated by examining general characteristics of multi-agent action, analyzing tradeoffs involved when selecting a representation for multi-agent action recognition, and constructing a system to recognize multi-agent action for a real task from noisy data. The representation, which is motivated by work in model-based object recognition and probabilistic plan recognition, makes four principal assumptions: (1) the goals of individual agents are natural atomic representational units for specifying the temporal relationships between agents engaged in group activities, (2) a high-level description of temporal structure of the action using a small set of low-order temporal and logical constraints is adequate for representing the relationships between the agent goals for highly structured, multi-agent action recognition, (3) Bayesian networks provide a suitable mechanism for integrating multiple sources of uncertain visual perceptual feature evidence, and (4) an automatically generated Bayesian network can be used to combine uncertain temporal information and compute the likelihood that a set of object trajectory data is a particular multi-agent action. The recognition algorithm is tested using a database of American football play descriptions. A system is described that can recognize single-agent and multi-agent actions in this domain given noisy trajectories of object movements. The strengths and limitations of the recognition system are discussed and compared with other multi-agent recognition algorithms.
Description
Thesis (Ph.D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 1999.
 
Includes bibliographical references (p. 167-184).
 
Date issued
1999
URI
http://hdl.handle.net/1721.1/9374
Department
Program in Media Arts and Sciences (Massachusetts Institute of Technology)
Publisher
Massachusetts Institute of Technology
Keywords
Architecture. Program in Media Arts and Sciences.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.