Show simple item record

dc.contributor.advisorOlivier de Weck and Rebecca A. Masterson.en_US
dc.contributor.authorChodas, Mark Aen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.date.accessioned2015-02-05T18:21:59Z
dc.date.available2015-02-05T18:21:59Z
dc.date.copyright2014en_US
dc.date.issued2014en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/93796
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2014.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 85-87).en_US
dc.description.abstractTraditional systems engineering processes have supported the development of many complex and successful space systems. However, some systems experience significant cost and schedule overruns. Systems engineering capabilities need to be improved to manage the expected increase in complexity of future systems. Model-based systems engineering (MBSE) is a new systems engineering paradigm where system models instead of documents are used to track requirements, describe design, support trade studies and analyses, and track verification and validation activities. The system models can be studied to expose relationships and details that are impossible to find when information is scattered across many documents and analytical models. This thesis quantifies the advantages of MBSE over traditional systems engineering by comparing the historical development of the REgolith Imaging X-ray Spectrometer (REXIS), a student-built instrument on the OSIRIS-REx asteroid sample return mission, against a hypothetical development timeline that incorporates information from system models. The system models, constructed in SysML, capture the topological information about the system including the interfaces between all parts of the system, the uncertainty associated with each interface, and the path along which the consequences of selected design choices or requirements flow. The latter two types of information are captured with custom extensions to SysML. The models also provide useful statistics about the development process. The REXIS part count increased 104% between SRR and SDR and 163% between SDR and PDR while the interface count increased 93% between SRR and SDR and 174% between SDR and PDR. Evidence from REXIS shows that incorporating information from system models reduces design iteration and makes the design process more efficient.en_US
dc.description.statementofresponsibilityby Mark A. Chodas.en_US
dc.format.extent114 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleImproving the design process of the REgolith X-ray Imaging Spectrometer with model-based systems engineeringen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc900609171en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record