MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Parameterizing land use planning : deploying quantitative analysis methods in the practice of city planning

Author(s)
Kaufmann, Talia
Thumbnail
DownloadFull printable version (17.78Mb)
Alternative title
Deploying quantitative analysis methods in the practice of city planning
Other Contributors
Massachusetts Institute of Technology. Department of Urban Studies and Planning.
Advisor
Brent D. Ryan.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Planning a city is a complex task. In particular, the practice of land use planning, which determines the quantities and locations of land uses we find in a city, is a highly complex process. Planners, developers and citizens involved in this process need to consider the multiple components of the urban system which are intertwined and connected in a complex network, and cannot be studied independently. While cities were extensively studied as complex adaptive systems over the last 50 years, showing universal patterns across countries, cultures and times, the practice of land use planning hasn't advanced as much and still deploys the rigid, macro-scale and local tool of zoning. This thesis will present a LEGO game planning methodology for urban land use that harnesses our understanding of cities as interconnected networks to enable a fine-grained, modular, incremental and universal development tool. Using a dataset summarizing the fine-grained location of commercial and public land uses in the 50 largest metropolitan areas in the U.S., this research will construct a catalog of urban models exploring similar patterns and their deviations across American cities. Utilizing the emerging patterns, this thesis will outline a methodology to produce quantitative planning guidelines in two main aspects: First, a method to assess land use quantities to support population levels will be demonstrated by implementing the scaling relationships found in cities from the Bettencourt et al research (2007). Next, a method to evaluate the spatial organization of cities will be presented by calculating co-location pairwise distances between amenities within city centers. The research will show that some co-location patterns are similar across cities, independent from land use quantities and urban density while others fluctuates between cities and depend on local characteristics. The LEGO game methodology will demonstrate an evolutionary iterative process to evaluate the liveliness of each urban environment, and explore the infinite possible assembly options of urban building blocks from various types and quantities, to enable a genuine datadriven decision making process for land use planning.
Description
Thesis: M.C.P., Massachusetts Institute of Technology, Department of Urban Studies and Planning, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 78-81).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/93806
Department
Massachusetts Institute of Technology. Department of Urban Studies and Planning
Publisher
Massachusetts Institute of Technology
Keywords
Urban Studies and Planning.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.