Show simple item record

dc.contributor.advisorEvelyn N. Wang.en_US
dc.contributor.advisorJames C. Preisig.en_US
dc.contributor.authorKim, Hyunho, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2015-02-05T18:25:54Z
dc.date.available2015-02-05T18:25:54Z
dc.date.copyright2014en_US
dc.date.issued2014en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/93826
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 77-79).en_US
dc.description.abstractThermal energy storage has received significant interest for delivering heating and cooling in both transportation and building sectors. It can minimize the use of on-board electric batteries for heating, ventilation and air-conditioning (HVAC) in electric vehicles (EVs) or reduce electricity consumption during peak demand in residential and commercial buildings. A compact and lightweight advanced thermo-adsorptive battery (ATB) is currently being developed to provide both heating and cooling. Additionally, if waste heat or solar energy were used to regenerate the ATB, the mechanical energy to run the cycle for vapor compression and transport, can be eliminated, thus, providing a significant benefit over conventional HVAC systems, especially when provision of electric energy is challenging. We present a detailed characterization of the thermophysical and transport properties of adsorptive materials for the development of the ATB. We discuss the feasibility of using contemporary adsorptive materials, such as zeolite 13X, by carrying out a detailed experimental and theoretical characterization. Enthalpy of desorption of zeolite 13X - water pair was characterized using the state of the art calorimetric technique. The experimental characterization and theoretical modeling of commercially available zeolite 13X (Sigma Aldrich, molecular sieves, 13X, powder, ~2 [mu]m average size) combined with carbon nano-materials, such as functionalized multi-walled carbon nanotube and graphene, are carried out to improve the effective thermal conductivity. Furthermore, we carried out performance characterization of a single-layer adsorption stack for the development of the ATB. Consequently, this thesis can serve as a framework for the development and characterization of adsorption-based thermal storage systems.en_US
dc.description.statementofresponsibilityby Hyunho Kim.en_US
dc.format.extent84 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleExperimental characterization of adsorption and transport properties for advanced thermo-adsorptive batteriesen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc900642605en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record