MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Trace metals and the ecology of marine cyanobacteria

Author(s)
Mann, Elizabeth Lowell, 1966-
Thumbnail
DownloadFull printable version (10.67Mb)
Other Contributors
Joint Program in Oceanography.
Advisor
Sallie W. Chisholm.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The marine cyanobacteria Synechococcus and Prochlorococcus are important primary producers in oligotrophic oceans. The abundance and cell division rates of these cyanobacteria can be influenced by trace metals such as iron and copper. Iron is an essential trace metal that is present in the high nutrient, low chlorophyll waters of the equatorial Pacific in extremely low concentrations. When these waters were enriched with iron, Prochlorococcus chlorophyll fluorescence per cell and cell size increased. Cell division rates doubled inside the iron enriched patch and reached two divisions per day in bottle incubations with additional iron, indicating that Prochlorococcus were iron limited. However, cell numbers remained constant because mortality rates nearly doubled after the addition of iron and essentially matched the increases in cell division rate. Trace metals can also be present in toxic, rather than limiting concentrations. Copper is an essential trace element that is toxic to cyanobacteria in pM quantities. In stratified water columns in the Sargasso Sea, free Cu2+ concentrations are high in the mixed layer (up to 6pM) and most of the Prochlorococcus population is located below the thermocline where free Cu2+ concentrations are lower. The distribution of Synechococcus is more uniform with depth. Prochlorococcus isolates were more sensitive to copper than Synechococcus, but members of the low chi BIA (high light adapted) ecotype were less sensitive than strains with high chi BIA ratios (low light adapted). In the field, the in situ concentration of free Cu2+ had a strong effect on the copper sensitivity of Prochlorococcus. Net growth rates were substantially reduced when Prochlorococcus from environments where the in situ free Cu2+ was low (deep mixed layers and below the thermocline in stratified water) were exposed to copper. Prochlorococcus in shallow mixed layers where in situ Cu2 + was high were less sensitive to copper and may have been members of the copper resistant low chi B/ A ecotype. Synechococcus were relatively copper resistant across a range of environments. These data are consistent with the hypothesis that ambient copper levels may influence the relative abundance of Prochlorococcus and Synechococcus in the Sargasso Sea.
Description
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Biology; and Woods Hole Oceanographic Institution), 2000.
 
Includes bibliographical references.
 
Date issued
2000
URI
http://hdl.handle.net/1721.1/9385
Department
Joint Program in Oceanography; Woods Hole Oceanographic Institution; Massachusetts Institute of Technology. Department of Biology; Massachusetts Institute of Technology. Department of Ocean Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Biology., Joint Program in Oceanography., Woods Hole Oceanographic Institution.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.