MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Linking Siberian Snow Cover to Precursors of Stratospheric Variability

Author(s)
Cohen, Judah; Furtado, Jason C.; Jones, Justin; Barlow, Mathew; Whittleston, David; Entekhabi, Dara; ... Show more Show less
Thumbnail
DownloadCohen-2014-Linking Siberian sno.pdf (1.495Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Previous research has linked wintertime Arctic Oscillation (AO) variability to indices of Siberian snow cover and upward wave activity flux in the preceding fall season. Here, daily data are used to examine the surface and tropospheric processes that occur as the link between snow cover and upward forcing into the stratosphere develops. October Eurasian mean snow cover is found to be significantly related to sea level pressure (SLP) and to lower-stratosphere (100 hPa) meridional heat flux. Analysis of daily SLP and 100-hPa heat flux shows that in years with high October snow, the SLP is significantly higher from approximately 1 November to 15 December, and the 100-hPa heat flux is significantly increased with a two-week lag, from approximately 15 November to 31 December. During November–December, there are periods with upward wave activity flux extending coherently from the surface to the stratosphere, and these events occur nearly twice as often in high snow years compared to low snow years. The vertical structure of these events is a westward-tilting pattern of high eddy heights, with the largest normalized anomalies near the surface in the same region as the snow and SLP changes. These results suggest that high SLP develops in response to the snow cover and this higher pressure, in turn, provides part of the structure of a surface-to-stratosphere wave activity flux event, thus making full events more likely. Implications for improved winter forecasts exist through recognition of these precursor signals.
Date issued
2014-07
URI
http://hdl.handle.net/1721.1/93892
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Journal of Climate
Publisher
American Meteorological Society
Citation
Cohen, Judah, Jason C. Furtado, Justin Jones, Mathew Barlow, David Whittleston, and Dara Entekhabi. “Linking Siberian Snow Cover to Precursors of Stratospheric Variability.” J. Climate 27, no. 14 (July 2014): 5422–5432. © 2014 American Meteorological Society.
Version: Final published version
ISSN
0894-8755
1520-0442

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.