MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Late transition metal catalyzed C-N and C-C bond forming reactions

Author(s)
Wolfe, John P. (John Perry), 1970-
Thumbnail
DownloadFull printable version (18.42Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Chemistry.
Advisor
Stephen L. Buchwald.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
New methods for the palladium-catalyzed amination of aryl halides are described. Key to these is the development of new catalysts and reaction conditions for these transformations. Initially, P(o-tol)3 ligated palladium catalysts were investigated but gave way to systems that used chelating phosphine ligands which substantially expanded the scope of the catalytic amination methodology. Palladium catalyst systems based on BINAP ((2,2'-diphenylphosphino)-1, 1 '-binaphthyl) allowed for the transformation of a much wider range of amines and aryl halide substrates, as well as aryl triflates. Of practical significance was that the use of cesium carbonate as a base at 100 °C substantially increased the functional group tolerance of the method. Palladium catalysts supported by novel, bulky, electron-rich phosphine ligands are exceptionally effective in the C-N, C-0, and C-C coupling procedures. For some substrate combinations, these palladium catalysts are effective for the room-temperature catalytic amination of aryl chlorides. These palladium catalysts are also highly effective for Suzuki coupling reactions of aryl bromides and chlorides at room temperature. Suzuki coupling reactions of aryl bromides and aryl chlorides are effective at very low catalyst loadings (0.000001-0.005 mol % Pd for ArBr, 0.02-0.05 mol % for ArCI) at 100 °C, and reactions of hindered aryl halides or boronic acids are effected at moderate catalyst loadings (1 mol % Pd). The high reactivity of these catalysts towards aryl chlorides challenges the conventional dogma that chloride substrates cannot be transformed under mild conditions with palladium catalysts, and significantly expands the pool of substrates available for cross-coupling chemistry.
Description
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 1999.
 
Includes bibliographical references.
 
Date issued
1999
URI
http://hdl.handle.net/1721.1/9521
Department
Massachusetts Institute of Technology. Department of Chemistry
Publisher
Massachusetts Institute of Technology
Keywords
Chemistry.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.