Stellar occultation studies of Saturn's upper atmosphere
Author(s)
Foust, Jeffrey Alan, 1971-
DownloadFull printable version (13.79Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Earth, Atmospheric, and Planetary Sciences.
Advisor
James L. Elliot.
Terms of use
Metadata
Show full item recordAbstract
The properties of Saturn's upper atmosphere are not well-known despite several spacecraft flybys. However, the region of 1-100 [mu]bar can be studied in detail by observing stellar occultations -- when the planet passes in front of a star -- from ground-based or Earth-orbiting telescopes. We use data from five such occultations: three observed in 1995 by the Faint Object Spectrograph (FOS) on the Hubble Space Telescope (HST), one observed in 1996 at the NASA Infrared Telescope Facility (IRTF) and one in 1989 observed by a different instrument at the IRTF. The data span latitudes from 52° south to 75 ° north. We fit isothermal models to each data set and also perform numerical inversions. These analyses show that temperatures in the 1-10 [mu]bar range can vary significantly as a function of season and latitude, ranging from 121 to 160 K, in accordance with radiative transfer models for the atmosphere. We also search for evidence of gravity wave saturation in Saturn's upper atmosphere, as seen in other planetary atmospheres, by analyzing the power spectra of temperature and density data and by studying the temperature lapse rate in the atmosphere. Our analysis is consistent with saturated gravity waves for all data sets, although gravity wave saturation is not the sole explanation for the spectra. We take advantage of the wavelength-resolved HST FOS data to study the composition of Saturn's upper atmosphere. We measured the difference in feature times for data taken at two wavelengths, and use the different refractivities of hydrogen and helium, as a function of wavelength to compute the relative amounts of the two elements in the planet's atmosphere. We find that the helium mass fraction is 0.26 ± 0.10, higher than that found using Voyager data, but marginally consistent with theoretical models for the evolution of Saturn's atmosphere, although the large error bars on the results make a definitive conclusion problematic.
Description
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 1999. Includes bibliographical references (p. 224-230).
Date issued
1999Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary SciencesPublisher
Massachusetts Institute of Technology
Keywords
Earth, Atmospheric, and Planetary Sciences.