MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sol-gel synthesis of one-dimensional photonic bandgap structures

Author(s)
Sparks, Andrew William, 1977-
Thumbnail
DownloadFull printable version (2.419Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Materials Science and Engineering.
Advisor
Lionel C. Kimerling.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A series of one-dimensional photonic bandgap devices were fabricated using SiO2 and TiO2 films deposited from solution by the sol-gel method. A dielectric mirror, or broadband interference filter, was fabricated by alternating quarter-wave optical thickness layers of the two films on a silicon substrate for a total of six layer pairs. This device exhibited an omnidirectional photonic bandgap of 450 nm in TE-polarization and 110 nm in TM-polarization. A microcavity, or narrowband filter, was fabricated with a TiO2 Fabry-Perot cavity sandwiched between two mirrors of three layer pairs each. The resonant cavity corresponded to a wavelength of roughly 1500 nm and shifted to shorter wavelengths with increasing incident angles. A maximum resonant quality factor of 11. 7 was achieved.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 1999.
 
Includes bibliographical references (p. 26-27).
 
Date issued
1999
URI
http://hdl.handle.net/1721.1/9557
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.