Show simple item record

dc.contributor.advisorHeidi M. Nepf.en_US
dc.contributor.authorConnor, Erin Graceen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Civil and Environmental Engineering.en_US
dc.date.accessioned2015-02-25T17:11:00Z
dc.date.available2015-02-25T17:11:00Z
dc.date.copyright2014en_US
dc.date.issued2014en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/95573
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2014.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 113-117).en_US
dc.description.abstractComplex interactions between flow conditions, blade posture, and mass transport processes, represent a challenge to fully understanding the influence of hydrodynamic conditions on the flux of nutrients to the blade surface of submerged aquatic vegetation. To isolate the physical mechanisms from biological processes, model seagrass blades constructed from low-density polyethylene (LDPE) film were used as a laboratory proxy. In accordance with previous studies of LDPE, the balance of the drag force due to fluid motion and the restoring force due to blade stiffness determined the blade posture in unidirectional flow and the relative motion in oscillatory flow. The blade rigidity was adjusted by changing either the blade length or the blade thickness. Horizontal force measurements showed that the reconfiguration of blades in flow resulted in a less than quadratic power-law relation between force and velocity. Specifically, F - U³/⁴. Two techniques and two tracer chemicals (dibromochloromethane and 1,2-dichlorobenzene) for estimating uptake by LDPE, as an analogue to nutrient uptake by seagrass, are described and compared. Mass uptake by blades during flux experiments demonstrated mixed control by both the LDPE-side and water-side mass transfer velocities. In experiments using 1,2-dichlorobenzene, measured uptake was fit to a numerical diffusion model to estimate the water-side transfer velocity. The water-side transfer velocity had a non-linear dependence on velocity in that the rate of increase of the mass transfer velocity decreased with greater blade bending in flow.en_US
dc.description.statementofresponsibilityby Erin Grace Connor.en_US
dc.format.extent117 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectCivil and Environmental Engineering.en_US
dc.titleBlade dynamics and flux measurements for model seagrass blades in waves and currentsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineering
dc.identifier.oclc903591818en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record