MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fluctuations and state preparation in quantum degenerate gases of sodium and lithium

Author(s)
Su, Edward (Edward Joseph)
Thumbnail
DownloadFull printable version (23.73Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Physics.
Advisor
Wolfgang Ketterle.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Ultracold atoms enable the precise study of novel systems where the correlations between particles are strong. These systems can be simple to describe yet impossible to efficiently simulate on a classical computer; understanding their behavior addresses fundamental questions in condensed-matter physics. The first part of this thesis describes measurements of spin and density fluctuations in degenerate Fermi gases. We begin by presenting a proof-of-principle experiment that demonstrates how information about atomic fluctuations can be extracted from experimental images and used to measure the temperature of a noninteracting system. We then describe a new technique for measuring spin fluctuations that employs an effect analogous to optical speckle, using it to characterize the pair correlations in a strongly attractive Fermi gas. Finally, we use the methods we have developed to characterize the magnetic correlations of a Fermi gas with strong repulsive interactions on the upper branch of a Feshbach resonance, and show that, contrary to earlier experimental and theoretical predictions, this system does not undergo a ferromagnetic phase transition. The second part describes the development of an apparatus for performing experiments with sodium and lithium in optical lattices. We describe progress towards the implementation of synthetic magnetic fields in systems of lattice fermions, which would enable the study of new topological phases. This includes the development of general precursors such a Bose-Einstein condensate and a stable Mott insulator of bosons, as well as more specific studies of heating and dynamical instabilities in tilted and shaken lattices.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Physics, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 117-124).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/95851
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.