MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Interneuron networks and cortical dynamics : emulated whisking drives SOM interneurons in the ketamine anesthetized mouse SI neocortex

Author(s)
Skowronski-Lutz, Ethan M. (Ethan Mikael)
Thumbnail
DownloadFull printable version (12.09Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences.
Advisor
Christopher I. Moore.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In the core of this thesis I test and confirm the hypothesis that separate classes of interneurons respond differentially to sensory stimulation independent of volitional or other top-down control on the part of the animal. I also test and confirm the hypothesis that, based only on bottom-up sensory stimulation the activity of two major classes of interneurons (adapting Parvalbumin positive and facilitating Somatostatin positive interneurons) predominates during different phases of what corresponds to natural sensing cycles in a behaving rodent. These questions are addressed using an in vivo mouse model with intrinsically fluorescent, but differentiable, interneuron populations combined with 2-photon imaging, Ca²+-sensitive dyes. Anesthesia and electrical control of facial muscles allowed for naturalistic stimulation without the confounds presented by volitional whisking and unknown top-down or behavioral states. Additional chapters in this thesis focus on ancillary work related to computational modeling of neural systems and systems' level perspectives on maturation and disease.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/95858
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Publisher
Massachusetts Institute of Technology
Keywords
Brain and Cognitive Sciences.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.