MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Neutron scattering and thermodynamic studies of quantum magnetism on the kagomé lattice

Author(s)
Chisnell, Robin Michael Daub
Thumbnail
DownloadFull printable version (23.84Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Physics.
Advisor
Young S. Lee.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The geometry of the kagome lattice leads to exciting novel magnetic behavior in both ferromagnetic and antiferromagnetic systems. The collective spin dynamics were investigated in a variety of magnetic materials featuring spin-1/2 and spin-1 moments on kagome lattices using neutron scattering and thermodynamic probes. Both ferromagnetic and antiferromagnetic systems were studied. Cu(1,3-bdc) is an organometallic material, where the Cu2+ ions form a ferromagnetic S = 1/2. kagomé system. Synthesis techniques were developed to produce -mg-sized deuterated single crystals, and ~2,000 crystals were partially coaligned to create a sample for neutron scattering measurements. Elastic neutron scattering measurements show the existence of long range magnetic ordering below T = 1.77 K. Integrated Bragg peak intensities were analyzed to determine the structure of ordered magnetic moments. Inelastic neutron scattering measurements show the magnon dispersion spectrum, which consists of a flat high energy band and two dispersive, lower energy bands. The application of a magnetic field perpendicular to the kagome plane opens gaps between these three bands and distorts the flatness of the highest energy band. The system was modelled as a nearest-neighbor Heisenberg ferromagnet with Dzyaloshinskii-Moriya(DM) interaction. The model dispersion and scattering structure factor were calculated and fit to the data to precisely determine the strengths of the nearest-neighbor coupling and DM interaction. The observed manon band structure is a bosonic analog to the band structure of the topological insulator systems. Antiferromagnetic kagome systems can exhibit novel magnetic ground states such as quantum spin liquids and spin nematics. Thermodynamic measurements were performed on the antiferromagnetic kagome materials MgxCu₄-x(OH)₆ Cl₂ , featuring S = 1/2 moments. These measurements reveal magnetic ordering at low values of x that is suppressed with increasing x. At x = 0.75, this ordering is not fully suppressed, but susceptibility and specific heat measurements reveal behavior similar to that of the quantum spin liquid candidate herbertsmithite. Thermodynamic and neutron scattering measurements were performed on the kagome lattice material BaNi₃(OH)₂(VO₄)₂, which features S = 1 moments. These measurements reveal competing interactions, which result in a spin glass ordering transition.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Physics, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 191-198).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/95868
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.