Show simple item record

dc.contributor.authorChetverikov, Denis
dc.contributor.authorKato, Kengo
dc.contributor.authorChernozhukov, Victor V.
dc.date.accessioned2015-03-11T19:02:29Z
dc.date.available2015-03-11T19:02:29Z
dc.date.issued2014-09
dc.date.submitted2014-04
dc.identifier.issn0090-5364
dc.identifier.urihttp://hdl.handle.net/1721.1/95958
dc.description.abstractModern construction of uniform confidence bands for nonparametric densities (and other functions) often relies on the classical Smirnov–Bickel–Rosenblatt (SBR) condition; see, for example, Giné and Nickl [Probab. Theory Related Fields 143 (2009) 569–596]. This condition requires the existence of a limit distribution of an extreme value type for the supremum of a studentized empirical process (equivalently, for the supremum of a Gaussian process with the same covariance function as that of the studentized empirical process). The principal contribution of this paper is to remove the need for this classical condition. We show that a considerably weaker sufficient condition is derived from an anti-concentration property of the supremum of the approximating Gaussian process, and we derive an inequality leading to such a property for separable Gaussian processes. We refer to the new condition as a generalized SBR condition. Our new result shows that the supremum does not concentrate too fast around any value. We then apply this result to derive a Gaussian multiplier bootstrap procedure for constructing honest confidence bands for nonparametric density estimators (this result can be applied in other nonparametric problems as well). An essential advantage of our approach is that it applies generically even in those cases where the limit distribution of the supremum of the studentized empirical process does not exist (or is unknown). This is of particular importance in problems where resolution levels or other tuning parameters have been chosen in a data-driven fashion, which is needed for adaptive constructions of the confidence bands. Finally, of independent interest is our introduction of a new, practical version of Lepski’s method, which computes the optimal, nonconservative resolution levels via a Gaussian multiplier bootstrap method.en_US
dc.description.sponsorshipNational Science Foundation (U.S.)en_US
dc.language.isoen_US
dc.publisherInstitute of Mathematical Statisticsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1214/14-aos1235en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcearXiven_US
dc.titleAnti-concentration and honest, adaptive confidence bandsen_US
dc.typeArticleen_US
dc.identifier.citationChernozhukov, Victor, Denis Chetverikov, and Kengo Kato. “Anti-Concentration and Honest, Adaptive Confidence Bands.” Ann. Statist. 42, no. 5 (October 2014): 1787–1818. © 2014 Institute of Mathematical Statisticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Economicsen_US
dc.contributor.mitauthorChernozhukov, Victor V.en_US
dc.relation.journalAnnals of Statisticsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsChernozhukov, Victor; Chetverikov, Denis; Kato, Kengoen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-3250-6714
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record