MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multiscale modeling and estimation of large-scale dynamic systems

Author(s)
Ho, Terrence Tian-Jian
Thumbnail
DownloadFull printable version (19.98Mb)
Advisor
Alan S. Willsky.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Statistical modeling and estimation of large-scale dynamic systems is important in a wide range of scientific applications. Conventional optimal estimation methods, however, are impractical due to their computational complexity. In this thesis, we consider an alternative multiscale modeling framework first developed by Basseville, Willsky, et al. [6, 18]. This multiscale estimation methodology has been successfully applied to a number of large-scale static estimation problems, one of which is the application of the so­called 1/ f multiscale models to the mapping of ocean surface height from satellite altimetric measurements. A modified 1/ f model is used in this thesis to jointly estimate the surface height of the Mediterranean Sea and the correlated component of the measurement noise in order to remove the artifacts apparent in maps generated with the more simplistic assumption that the measurement noise is white. The main contribution of this thesis is the extension of the multiscale framework to dynamic estimation. We introduce a recursive procedure that propagates a multiscale model for the estimation errors in a manner analogous to, but more efficient than, the Kalman filter's propagation of the error covariances. With appropriately chosen multiscale models, such as the new class of non-redundant models that we introduce, the computational gain can be substantial. We use 1-D and 2-D diffusion processes to illustrate the development of our algorithm. The resulting multiscale estimators achieve O(N) computational complexity with near-optimal performance in 1-D and 0 (N312) in 2-D, as compared to the O (N3) complexity of the standard Kalman filter.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.
 
Includes bibliographical references (p. 247-257).
 
Date issued
1998
URI
http://hdl.handle.net/1721.1/9632
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.