MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dynamic nuclear polarization of biological systems at high magnetic fields

Author(s)
Hall, Dennis A. (Dennis Alan), 1970-
Thumbnail
DownloadFull printable version (11.12Mb)
Advisor
Robert G. Griffin.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Dynamic nuclear polarization methods were studied at high magnetic field strength and were applied to improve the sensitivity of the nuclear magnetic resonance spectroscopy of biological solids. Studies of the dynamics of electron-nuclear polarization transfer via the solid effect and thermal mixing at 5 Tesla are described for two systems: the free radical BDPA doped into polystyrene and the nitroxide TEMPO in a water:glycerol matrix. A model for thermal mixing at high magnetic fields in paramagnetic systems such as TEMPO which exhibit partially inhomogeneous EPR lines is developed in which electron-electron cross relaxation across the EPR line is explicitly included. The TEMPO/water/glycerol matrix is exploited for polarization transfer to biological solutes. As a demonstration, enhancements of up to two orders of magnitude were exhibited in the high-resolution "1N magic-angle spinning spectra of the protein T4- lysozyme. The potential of this method as a general signal enhancement tool for biological systems is assessed. These dynamic nuclear polarization experiments at 5 Tesla require high-power microwave irradiation at or near the EPR frequency. To that end, a cyclotron resonance maser, or gyrotron, is described. This 140 GHz gyrotron, which under conventional operation produces millisecond pulses, has been adapted to operate at -100 W in a quasi-CW mode for tens of seconds, the time required for electron-nuclear polarization transfer.
Description
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 1998.
 
Includes bibliographical references.
 
Date issued
1998
URI
http://hdl.handle.net/1721.1/9635
Department
Massachusetts Institute of Technology. Department of Chemistry
Publisher
Massachusetts Institute of Technology
Keywords
Chemistry

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.