MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

System identification of cortisol secretion : characterizing pulsatile dynamics

Author(s)
Faghih, Rose Taj
Thumbnail
DownloadFull printable version (7.708Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Emery N. Brown and Munther A. Dahleh.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Cortisol controls the body's metabolism and response to inflammation and stress. Cortisol is released in pulses from the adrenal glands in response to pulses of adreno-corticotropic hormone (ACTH) released from the anterior pituitary; in return, cortisol has a negative feedback effect on ACTH release. Modeling cortisol secretion and the interactions between ACTH and cortisol allows for quantifying normal and abnormal physiology and can potentially be used for diagnosis and optimal treatment of some cortisol disorders. Due to noise, modeling these interactions using concurrent data from serum ACTH and cortisol levels is challenging. First, using serum cortisol levels, we model cortisol secretion from the adrenal glands by representing the sparse pulses of cortisol using an impulse train. We formulate an optimization problem and successfully recover infusion and clearance rates as well as physiologically plausible cortisol pulses. Then, for serum ACTH and cortisol levels, we model ACTH and cortisol secretion by representing the sparse ACTH pulses using an impulse train. By considering a multi-rate system, we formulate another optimization problem and successfully recover model parameters as well as physiologically plausible ACTH pulses. We solve both optimization problems under the assumption that the number of pulses is between 15 to 22 pulses over 24 hours, and recover the timing and amplitudes of the pulses using compressed sensing, and employ generalized cross validation for determining the number of pulses. In all our studies mentioned above, the datasets we use consist of ACTH and cortisol levels sampled at 10-minute intervals from 10 healthy women. Finally, we present a mathematical characterization of pulsatile cortisol secretion. We hypothesize that there is a controller in the anterior pituitary that leads to pulsatile release of cortisol, and propose a mathematical formulation for such controller. Our proposed controller achieves impulse control, and the obtained impulses and plasma cortisol levels exhibit cortisol circadian and ultradian rhythms that are in agreement with experimental data.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 108-113).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/96457
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.