MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Conformal loop ensembles and the Gaussian free field

Author(s)
Watson, Samuel Stewart, 1986-
Thumbnail
DownloadFull printable version (21.18Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mathematics.
Advisor
Scott R. Sheffield.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The study of two-dimensional statistical physics models leads naturally to the analysis of various conformally invariant mathematical objects, such as the Gaussian free field, the Schramm-Loewner evolution, and the conformal loop ensemble. Just as Brownian motion is a scaling limit of discrete random walks, these objects serve as universal scaling limits of functions or paths associated with the underlying discrete models. We establish a new convergence result for percolation, a well-studied discrete model. We also study random sets of points surrounded by exceptional numbers of conformal loop ensemble loops and establish the existence of a random generalized function describing the nesting of the conformal loop ensemble. Using this framework, we study the relationship between Gaussian free field extrema and nesting extrema of the ensemble of Gaussian free field level loops. Finally, we describe a coupling between the set of all Gaussian free field level loops and a conformal loop ensemble growth process introduced by Werner and Wu. We prove that the dynamics are determined by the conformal loop ensemble in this coupling, and we use this result to construct a conformally invariant metric space.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 173-178).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/97319
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.