MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Earth, Atmospheric, and Planetary Sciences
  • Earth, Atmospheric and Planetary Sciences - Ph.D. / Sc.D.
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Earth, Atmospheric, and Planetary Sciences
  • Earth, Atmospheric and Planetary Sciences - Ph.D. / Sc.D.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Positioning in geophysics : applications to GPS seismology, airborne gravimetry, and the Dawn Spacecraft at Vesta

Author(s)
Centinello, Frank Joseph, III
Thumbnail
DownloadFull printable version (18.68Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences.
Advisor
Thomas Herring and Maria T. Zuber.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This dissertation presents improvements made on position estimation techniques applied to seismology, airborne gravimetry and planetary gravity recovery. In Chapters 2 and 3, a smoothed ionospheric model computed using GPS phase observations was applied to seismology and airborne gravimetry. The seismic investigation observed the 2010 El Mayor-Cucapah earthquake near Baja, California. The application of the ionospheric model resulted in an overall 4 mm RMS reduction in the measurements of GPS heights. The same ionospheric technique was applied to GPS data collected during an airborne gravity survey. In this study the model improved the RMS spread of four repeat gravity profiles by 0.6 mGal. Chapters 4 and 5 focus on the Dawn mission to the asteroid 4 Vesta. Chapter 4 details the use of spacecraft image constraints in the orbit determination software GEODYN, which is used by NASA/GSFC for trajectory reconstruction and geophysical analyses of planets. Image constraints are shown to converge an orbit solution that differs from that computed by the Dawn Science Team at JPL by less than 13 m. Chapter 5 describes the application of the new technique in the estimation of the orientation parameters and low-degree gravity field of Vesta. The pole orientation and low-degree gravity field estimated agree with that presented by the Dawn Science Team through the use of an independent software and estimation algorithm.
Description
Thesis: Ph. D. in Geophysics, Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 133-143).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/97333
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences.
Publisher
Massachusetts Institute of Technology
Keywords
Earth, Atmospheric, and Planetary Sciences.

Collections
  • Earth, Atmospheric and Planetary Sciences - Ph.D. / Sc.D.
  • Earth, Atmospheric, and Planetary Sciences - Ph.D. / Sc.D.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.